CLASTRIN - um Classificador de Tráfego de Aplicações Internet Utilizando a Abordagem "Um-Contra-Todos"

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Carmo, Marcus Fabio Fontenelle do
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://biblioteca.sophia.com.br/terminalri/9575/acervo/detalhe/87087
Resumo: Neste trabalho, apresenta-se uma proposta de um classificador de aplicações presentes no tráfego Internet. A proposta deste classificador é utilizar informações estatísticas coletadas dos fluxos de dados e identificar a menor quantidade de discriminantes estatísticos capazes de distinguir os fluxos de determinada classe de aplicação dos demais, separando-os em grupos. Para a realização desta classificação a metodologia apresentada se baseia na divisão de um problema de classificação de 1 para N em N problemas de classificação 1 para 1 (abordagem um contra todos ? one-against all). A geração dos conglomerados de dados é realizada através da análise de agrupamentos (método de estatística multivariada) utilizando-se de um método não hierárquico (K-Médias ? K-Means) em conjunto com técnicas de aprendizagem de máquina supervisionada. A metodologia apresentada parte do princípio que o melhor conjunto de variáveis para classificar uma determinada aplicação não é o mesmo para classificar N aplicações. Comparativamente a outros métodos estudados, este trabalho inovou ao apresentar uma redução do número de variáveis (features) a serem analisadas através de um método estatístico computacionalmente simples, que pode ser utilizado em outros conjuntos de dados (traces). Foi obtida uma média de acerto na classificação dos fluxos das classes sob análise de 74,40% e média de falsos negativos de 5,98%. Palavras-chave: Redes de Computadores; Discriminantes Estatísticos; Classificação de Tráfego; Estatística Multivariada; Análise de Agrupamentos; Aprendizagem de Máquina.