Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Carvalho, Lucas de Moura |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://biblioteca.sophia.com.br/terminalri/9575/acervo/detalhe/105126
|
Resumo: |
Resumo: Neste trabalho, nós descrevemos a utilização da classificação automática para avaliar exercícios físicos feitos por crianças quando participam de exergames em smartphones. A solução proposta possui um módulo de monitoramento inteligente da realização dos exercícios físicos feitos pela criança, onde o smartphone é utilizado como sensor dos movimentos executados no exercício físico e um sistema baseado em conhecimento produzido por aprendizagem automática verifica a qualidade do mesmo. Neste trabalho descreveremos a metodologia usada para construir essa base de conhecimento e detalharemos a estratégia de aprendizado de máquina que permitiu treinar o aplicativo a identificar quando um exercício físico está sendo feito corretamente por uma criança. Os resultados, em termos de acurácia na identificação de movimentos corretos pelo exergame usando a base de conhecimento, são igualmente analisados para, por fim, mostrarmos os detalhes de implementação do aplicativo embarcado e entendermos o impacto da classificação do exercício na motivação para execução dos mesmos. Palavras-chave: Exergames, Reconhecimento de atividades humanas, Gaming Behavior, Classificação. |