Redução de atributos utilizando análise discriminante com aplicações na detecção de defeitos em couro bovino

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Amorim, Willian Paraguassu
Orientador(a): Pistori, Hemerson
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufms.br/handle/123456789/514
Resumo: Este trabalho apresenta um estudo e análise de técnicas de redução de atributos, baseada na análise discriminante aplicada a problemas de detecção de defeitos em imagens de couros bovinos no estágio couro cru e wet-blue. Foi realizado um estudo sobre casos que geram problemas no uso da análise discriminante quando aplicada em situações propícias a problemas de singularidade. Das soluções encontradas, FisherFaces, CLDA, DLDA, YLDA e a técnica de Kernel, implementamos cada uma, e realizamos experimentos de desempenho, analisando a taxa de acerto, tempos de treinamento e classificação, à medida que a quantidade de atributos é reduzida. Os resultados experimentais indicaram que a redução de atributos pode manter a eficiência na classificação, mesmo em situações onde ocorre ou não a singularidade. Foram realizadas análises comparativas, apresentando cada resultado de desempenho comparados a técnicas de redução de atributos e classificadores diferentes. Identificamos também quais as melhores técnicas de extração de atributos e algoritmos de classificação, apresentando uma breve avaliação quanto a seus desempenhos e custo de processamento. E por fim realizamos uma comparação entre o sistema de classificação automática desenvolvido com a classificação feita manualmente por especialistas na área.