Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Amorim, Willian Paraguassu |
Orientador(a): |
Pistori, Hemerson |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufms.br/handle/123456789/514
|
Resumo: |
Este trabalho apresenta um estudo e análise de técnicas de redução de atributos, baseada na análise discriminante aplicada a problemas de detecção de defeitos em imagens de couros bovinos no estágio couro cru e wet-blue. Foi realizado um estudo sobre casos que geram problemas no uso da análise discriminante quando aplicada em situações propícias a problemas de singularidade. Das soluções encontradas, FisherFaces, CLDA, DLDA, YLDA e a técnica de Kernel, implementamos cada uma, e realizamos experimentos de desempenho, analisando a taxa de acerto, tempos de treinamento e classificação, à medida que a quantidade de atributos é reduzida. Os resultados experimentais indicaram que a redução de atributos pode manter a eficiência na classificação, mesmo em situações onde ocorre ou não a singularidade. Foram realizadas análises comparativas, apresentando cada resultado de desempenho comparados a técnicas de redução de atributos e classificadores diferentes. Identificamos também quais as melhores técnicas de extração de atributos e algoritmos de classificação, apresentando uma breve avaliação quanto a seus desempenhos e custo de processamento. E por fim realizamos uma comparação entre o sistema de classificação automática desenvolvido com a classificação feita manualmente por especialistas na área. |