ResGhostU-Net: U-Net compacta para segmentação de eucalipto em imagens multiespectrais da Sentinel-2

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: MOUNIF HASSAN TORMOS
Orientador(a): Jonathan de Andrade Silva
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Fundação Universidade Federal de Mato Grosso do Sul
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufms.br/handle/123456789/11239
Resumo: The mapping of eucalyptus using remote sensing images can be an inaccurate and laborious process, especially when considering the large-scale multitemporal analysis of images. To try to solve this problem, new machine learning approaches have been proposed. In this work, we propose a compact modified U-Net (ResGhostUNet) for the task of semantic segmentation of eucalyptus using Sentinel-2 satellite images. In addition to the simplified architecture that has a reduced number of filters and depth and downsampling convolutions, we introduce the Ghost Residual Block, which allows reducing the computational cost and increasing the training efficiency. This study uses a new dataset that contains images of eucalyptus plantations in different cities in the Brazilian Cerrado biome. The quantitative and qualitative results demonstrate that the proposed method is highly competitive with respect to popular semantic segmentation methods. The ablation study highlights the effectiveness of the proposed component of the method. Furthermore, it demonstrates that using at least four selected bands yields slightly better results compared to utilizing all 13 bands. The proposed method consistently outperforms popular semantic segmentation methods, being simpler in terms of design, lightweight in terms of parameters, and fast in terms of processing. Due to these characteristics, ResGhostU-Net is potentially applicable for large-scale eucalyptus mapping using open-access satellite imagery.