Estimating age and gender in instagram using face recognition: advantages, bias and issues.

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Diego Couto de Las Casas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/ESBF-AE8PMR
Resumo: Studies in social computing often take into account personal attributes of users of specific online services in order to better understand their behavior. As these attributes are often unavailable for researchers and developers, recent efforts have been devoted to estimate them by combining other sources of information. Besides offering insights to how users relate to online platforms, such attribute estimation methodologies can also contribute to understanding how exposed is user information to third parties. In this master thesis I propose to study the use of face recognition technologies to estimate the age and the gender of the users of a popular, image-based online social network, Instagram. This approach is inspired by the increasing wealth of information from image data in online social networks, as well as recent advances in face recognition.