Proposta de um algoritmo genérico de detecção de novidades em séries temporais utilizando modelos de previsão

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Andre Paim Lemos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/BUOS-8CYNMV
Resumo: Novelties or anomalies on time series can be seen as unexpected values or a sequence of unexpected values when compared to a dataset considered to be normal. A time series novelty detection algorithm must be capable to classify each point of the time series as normal or novelty. There are many applications to the problem of time series novelty detection including fault detection on dynamic systems, fraud detection on financial systems and physiologic signals monitoring. This work proposes a generic novelty Detection algorithm based on a forecasting model. The algorithm is generic because it does not define the forecasting model to be used. Two algorithm instantiations are proposed, the first one, based on a statistical model and the second one based on a neural model. The algorithm is used to screen obstructive sleep apnea through electrocardiogram monitoring and to detect faults on a dynamic system monitoring some of the system variables. The results achieved on both problems are near to the results found on literature.