Metodologia de previsão utilizando identificação de sistemas aplicada a séries temporais

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Bulhões, Júnio Santos lattes
Orientador(a): Calixto, Wesley Pacheco lattes
Banca de defesa: Calixto, Wesley Pacheco, Calheiros, Débora Fernandes, Oliveira, Sérgio Botelho de, Pinheiro Neto, Daywes, Oliveira, Marco Antonio Assfalk de
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Engenharia Elétrica e da Computação (EMC)
Departamento: Escola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/9078
Resumo: This work proposes a methodology that uses spectral analysis and system identification in order to fill gaps in time series. The methodology proposes the implementation of predictions in time series of physical and chemical variables that are related with flood areas that are collected with no frequency. It is used predictive neural network with autoregressive model and classification neural network. Collected values are extracted from the original data set in order to later test and validate the proposed methodology. The results demonstrated the effectiveness of the methodology, which is able to predict the behavior of different variables using the previously recognized patterns in the time series.