Gonalidade e Modelos Canônicos de Curvas Racionais Unicuspidais

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Naamã Galdino da Silva Neris
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ICX - DEPARTAMENTO DE MATEMÁTICA
Programa de Pós-Graduação em Matemática
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/38882
Resumo: The main goal of this work is the study of the gonality of a curve C. First, in the case where C is not isomorphic to its canonical model C", or equivalently, its dualizing sheaf is just torsion free. This is the case said non Gorenstein, where C" plays the role of a canonical curve. We classify such curves up to genus 5 by means of more general families of curves of arbitrary genus. In the case above, we also study its canonical model. Afterwards, we describe unicuspidal rational curves of genus 5 with hyperelliptic singularities in terms of its gonality. In conclusion, we analyze an upper bound for this invariant for Gorenstein unicuspidal curves.