Sobre gonalidade, modelos canônicos e scrolls

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Jairo Menezes e Souza
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/EABA-ATDJTA
Resumo: Let C be an integral and projective curve; and let C' be its canonical model. We study the relation between the gonality of C and the dimension of a rational normal scroll S where C' can lie on. We are mainly interested in the case where C is singular, or even non-Gorenstein, in which case (...). We first analyze some properties of an inclusion (...) when it is induced by a pencil on C. Afterwards, in an opposite direction, weassume C' lies on a certain scroll, and check some properties C may satisfy, such as gonality and the kind of its singularities. At the end, we prove that a rational monomial curve C has gonality d if and only if C' lies on a (d -1)-fold scroll.