Estudo sobre métodos evolutivos multiobjetivos voltados para robustez e diversidade no espaço de decisão

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Fernanda Caldeira Takahashi
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/BUBD-AFHP5L
Resumo: Multiobjective optimization evolutionary algorithms (MOEAs) are usually evaluated by their ability to obtain good approximations of the Pareto-optimal front with an ideally uniform spread of samples in the space of objectives. However, by discarding information about thespace of decision variables, these computational tools return solution sets that do not consider the sensitivity of points to perturbations in their variables, or that do not contain possible alternative designs leading to similar performance values. This work presents an alternative methodof selection which employs a measure of solution density in the space of decision variables in addition to the traditional ones employed in the space of objectives during the selection procedure of the algorithm. Through an experimental evaluation, it is verified that the inclusionof this approach leads the algorithms to present a greater capacity to generate a representative sampling of the Pareto-optimal set. The proposed approach makes it possible to gather complementaryinformation regarding the sensitivity of solutions belonging to different regions of the search space, providing potentially useful information for the decision maker to select which particular solution may end up being implemented.