Soluções estacionárias e quasi-estacionárias para um problema de fronteira móvel modelando o crescimento de tumores esféricos

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Juliana Ramos Fioravante
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/EABA-6PNPKS
Resumo: Nesta dissertação, estudamos existência, unicidade e comportamento assintótico das soluções de um problema de fronteira móvel que modela o crescimento de um tumor esférico, não necrótico, na ausência de inibidores. Para o modelo de tumor não-necrótico, trabalhamos com soluções estacionárias e quasi-estacionárias. Para mostrar a existência de solução estacionária, utilizamos o métdo de sub- e super-solução, e para mostrar a existência de solução quasiestacionária, utilizamos o Teorema do Ponto Fixo de Schauder. Implementamos os dois casos e mostramos a forma com que discretizamos os modelos e seus gráficos.Por fim, fizemos algumas considerações do modelo necrótico.