Raman spectra-based structured classificatory analysis of quinoidal and derivative molecular systems: an unsupervised machine learning approach

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Arthur Patrocínio Pena
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ICX - DEPARTAMENTO DE FÍSICA
Programa de Pós-Graduação em Física
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
DFT
Link de acesso: http://hdl.handle.net/1843/69279
Resumo: Este trabalho traz um método de análise classificatória baseado nos espectros vibracionais Raman de 38 quinonas e estruturas relacionadas, ordenando e classificando espectralmente os compostos. Os sistemas moleculares são relevantes para processos químicos e biológicos, com aplicações em farmacologia, toxicologia e medicina. A estratégia classificatória usa uma combinação de análise de componentes principais com métodos de agrupamento k-means. Tanto as simulações teóricas como os dados experimentais são analisados, estabelecendo assim as suas características espectrais, relacionadas com as suas estruturas e propriedades químicas. O protocolo introduzido aqui deve ser amplamente aplicável em outros sistemas moleculares e de estado sólido, servindo de base para um protocolo de estudo de materiais fundamentado em espectroscopia Raman e aprendizado de máquina.