Estratégias para redução do custo de implementação de um classificador geométrico por arestas de suporte

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Alan Cândido de Souza
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICA
Programa de Pós-Graduação em Engenharia Elétrica
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/31127
Resumo: This work evaluates strategies to reduce the implementation cost of classifiers based on the CHIP-clas model, which is independent of hyperparameter tuning and optimizations algorithms. The first proposal aims to evaluate the trade-off among numerical precision and model performance. Two 16-bit floating-point formats were compared to the 32-bit precision implementation. The results indicate that the model is robust to low precision computation, providing statistically equivalent results compared to the base model while reducing in a half the memory demand. The second proposal evaluates a method that implements a parallel computation technique to the classifier's training stage. Results also indicated statistically equivalent results and a reduction of processing time in some databases.