Transduction based approaches for dataset shift problems
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Minas Gerais
Brasil ENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICA Programa de Pós-Graduação em Engenharia Elétrica UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/32573 |
Resumo: | O problema do Dataset Drift ocorre em toda e qualquer área que utilize dados para criar ou ajustar modelos. É chamado de drift o fenômeno que faz com que haja alguma diferença entre os dados de treinamento e os de teste, além de se manisfestar em qualquer momento no ambiente de aplicação real do modelo. Nesse contexto são sugeridas abordagens utilizando aprendizado transdutivo para lidar com o Dataset Drift. Duas estratégias foram definidas e apresentam resultados satisfatórios com algumas limitações. A primeira é baseada em uma Abordagem Essencialmente Transdutiva que utiliza um algoritmo genético para a otimização da entropia dos dados. A outra é uma estratégia orientada a problemas espaciais bidimensionais, baseada em Grafos de Gabriel para a estimação de Modelos de Mistura Gaussiana. No entanto, a análise da qualidade dos modelos perante a presença do drift ainda não é realizada de forma sistemática, dessa forma os experimentos foram feitos com estudos de caso. |