Subvariedades lagrangianas e equações de Hamilton-Jacobi
Ano de defesa: | 2009 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Minas Gerais
UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/EABA-7VWU3X |
Resumo: | O presente trabalho se propõe a estudar Subvariedades Lagrangianas. Estas são subvariedades de T¤M invariantes pelo Fluxo Hamiltoniano, cuja dimensão não é a metade da dimensão de T¤M. Faremos também um pequeno estudo da equação de Hamilton-Jacobi no caso autônomo, cujas soluções regulares definem Subvariedades Lagrangianas especiais. Em particular, no caso em que M = Tn, o toro de dimensão n, os toros invariantes do tipo KAM são Gráficos Lagrangianos. Trataremos também a equação de Hamilton-Jacobi, cujo desenvolvimento detalhado nos foge o objetivo. A equação de Hamilton-Jacobi é considerada a peça central da mecânica analítica, que é responsável pelo grande desenvolvimento de fundamentos matemáticos da mecânica quântica como também na análise em variedades. A teoria de Hamilton-Jacobi ébaseada não apenas nos trabalhos de Hamilton e Jacobi, como de seus precursores: Fermat, Newton, Huygens, Johann Bernoulli, Euler, Lagrange, Legendre, Monge, Pla®, Poisson, etc..As contribuições de Lie, Poincaré e E. Cartan tiveram grande infuência em seu entendimento atual. |