Determinação de momentos do estimador de máxima verossimilhança para filas Erlang e filas markovianas de servidor único

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Eriky Silva Gomes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ICX - DEPARTAMENTO DE ESTATÍSTICA
Programa de Pós-Graduação em Estatística
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/77709
https://orcid.org/0000-0002-8435-8901
Resumo: Queueing Theory is a research area that studies systems where customers must wait in order to be served. Among the traditional queueing models, the M/M/1 queues and their generalization, the M/Er/1 queues, are relevant. A problem of interest in these models is to estimate the traffic intensity, which represents the proportion of time on which customers are being served. This thesis analyzed the central moments (mean and variance) of the maximum likelihood estimator (MLE) of traffic intensity for M/M/1 and M/Er/1 queues. This analysis is valid for both small and large samples, representing an improvement over the asymptotic results present in the literature, which are not valid for small samples. Monte Carlo simulations were used to confirm the accuracy of the obtained analytical expressions. It was observed that the MLE of traffic intensity is biased, especially for small samples and heavily loaded systems. This behavior was not predicted by the asymptotic expressions. Finally, it was noted the efficiency of the developed analytical expression, compared to the numerical simulations that would be required to approximate the central moments of the MLE.