Synthesizing realistic human dance motions conditioned by musical data using graph convolutional networks

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: João Pedro Moreira Ferreira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
Programa de Pós-Graduação em Ciência da Computação
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/38880
https://orcid.org/0000-0002-8093-9880
Resumo: A síntese de movimento humano utilizando técnicas de aprendizado de máquina tem se tornado cada vez mais promissora para reduzir a necessidade de captura de dados para a produção de animações. Aprender a mover-se de maneira natural a partir de um áudio, e particularmente aprender a dançar, é uma tarefa difícil que humanos frequentemente realizam com pouco esforço. Cada movimento de dança é único, mas ainda assim esses movimentos preservam as principais características do estilo de dança. A maioria das abordagens existentes para o problema de síntese de dança utiliza redes convolucionais clássicas e redes neurais recursivas no processo de aprendizagem. No entanto, elas enfrentam problemas no treinamento e na variabilidade dos resultados devido à geometria não Euclideana da estrutura da variedade do espaco de movimento. Nesta dissertação é proposta uma nova abordagem inspirada em redes convolucionais em grafos para tratar o problema de geração automática de dança a partir de áudio. O método proposto utiliza uma estratégia de treinamento adversário condicionada a uma música para sintetizar movimentos naturais preservando movimentos característicos dos diferentes estilos musicais. O método proposto foi avaliado em um estudo de usuário e com três métricas quantitativas, comumente empregadas para avaliar modelos generativos. Os resultados mostram que a abordagem proposta utilizando redes convolucionais em grafos supera o estado da arte em geração de dança condicionada a música em diferentes experimentos. Além disso, o modelo proposto é mais simples, mais fácil de ser treinado, e capaz de gerar movimentos com estilo mais realista baseado em diferentes métricas qualitativas e quantitativas do que o estado da arte. Vale ressaltar que o método proposto apresentou uma qualidade visual nos movimentos gerados comparável a movimentos reais.