Synthesizing realistic human dance motions conditioned by musical data using graph convolutional networks
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Minas Gerais
Brasil ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO Programa de Pós-Graduação em Ciência da Computação UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/38880 https://orcid.org/0000-0002-8093-9880 |
Resumo: | A síntese de movimento humano utilizando técnicas de aprendizado de máquina tem se tornado cada vez mais promissora para reduzir a necessidade de captura de dados para a produção de animações. Aprender a mover-se de maneira natural a partir de um áudio, e particularmente aprender a dançar, é uma tarefa difícil que humanos frequentemente realizam com pouco esforço. Cada movimento de dança é único, mas ainda assim esses movimentos preservam as principais características do estilo de dança. A maioria das abordagens existentes para o problema de síntese de dança utiliza redes convolucionais clássicas e redes neurais recursivas no processo de aprendizagem. No entanto, elas enfrentam problemas no treinamento e na variabilidade dos resultados devido à geometria não Euclideana da estrutura da variedade do espaco de movimento. Nesta dissertação é proposta uma nova abordagem inspirada em redes convolucionais em grafos para tratar o problema de geração automática de dança a partir de áudio. O método proposto utiliza uma estratégia de treinamento adversário condicionada a uma música para sintetizar movimentos naturais preservando movimentos característicos dos diferentes estilos musicais. O método proposto foi avaliado em um estudo de usuário e com três métricas quantitativas, comumente empregadas para avaliar modelos generativos. Os resultados mostram que a abordagem proposta utilizando redes convolucionais em grafos supera o estado da arte em geração de dança condicionada a música em diferentes experimentos. Além disso, o modelo proposto é mais simples, mais fácil de ser treinado, e capaz de gerar movimentos com estilo mais realista baseado em diferentes métricas qualitativas e quantitativas do que o estado da arte. Vale ressaltar que o método proposto apresentou uma qualidade visual nos movimentos gerados comparável a movimentos reais. |