Geographical mapping of coffee crops by using convolutional networks

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Rafael Marlon Peirera Costa Baeta Carreira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
Programa de Pós-Graduação em Ciência da Computação
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/43132
Resumo: Nas últimas décadas temos observado um constante crescimento na utilização de imagens de sensoriamento remoto para o monitoramento de atividades e fenômenos na Terra, o que permite o desenvolvimento de diversas aplicações. Dentre as aplicações existentes, a criação de mapas temáticos é uma das mais comuns, pois permite a classi cação e análise dos vários objetos que compõe uma imagem podendo ser utilizado para muitos ns, tais como: monitoramento, planejamento e reconhecimento. Mapas temáticos podem ser construídos de forma manual ou por modelos treinados através de aprendizagem supervisionada. Neste tipo de aprendizagem, o sistema é treinado para aprender diferentes padrões através da utilização de amostras rotuladas fornecidas pelo usuário. Nesse sentido, nesta dissertação, um método de geração de mapas temáticos foi desenvolvido para o reconhecimento de colheitas de café visando auxiliar na obtenção de dados dessa cultura agrícola. Pois, apesar de sua grande importância na economia do país e de Minas Gerais, a obtenção de dados ainda é realizada de forma manual. O método desenvolvido neste trabalho baseia-se na combinação de redes neuronais de convolução em múltiplas escalas sendo a escolha das redes neuronais para o desenvolvimento deste projeto atribuída ao seu desempenho superior aos métodos tradicionais propostos em visão computacional e também por ainda não ser amplamente utilizada em tarefas relacionadas à área agrícola. A utilização de uma abordagem multi-escala está relacionada à variação do tamanho dos padrões encontrados em imagens de satélite e visa tornar o método mais robusto ao permitir que características distintas sejam aprendidas em cada uma das escalas e usadas de forma complementar.