Geographical mapping of coffee crops by using convolutional networks
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Minas Gerais
Brasil ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO Programa de Pós-Graduação em Ciência da Computação UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/43132 |
Resumo: | Nas últimas décadas temos observado um constante crescimento na utilização de imagens de sensoriamento remoto para o monitoramento de atividades e fenômenos na Terra, o que permite o desenvolvimento de diversas aplicações. Dentre as aplicações existentes, a criação de mapas temáticos é uma das mais comuns, pois permite a classi cação e análise dos vários objetos que compõe uma imagem podendo ser utilizado para muitos ns, tais como: monitoramento, planejamento e reconhecimento. Mapas temáticos podem ser construídos de forma manual ou por modelos treinados através de aprendizagem supervisionada. Neste tipo de aprendizagem, o sistema é treinado para aprender diferentes padrões através da utilização de amostras rotuladas fornecidas pelo usuário. Nesse sentido, nesta dissertação, um método de geração de mapas temáticos foi desenvolvido para o reconhecimento de colheitas de café visando auxiliar na obtenção de dados dessa cultura agrícola. Pois, apesar de sua grande importância na economia do país e de Minas Gerais, a obtenção de dados ainda é realizada de forma manual. O método desenvolvido neste trabalho baseia-se na combinação de redes neuronais de convolução em múltiplas escalas sendo a escolha das redes neuronais para o desenvolvimento deste projeto atribuída ao seu desempenho superior aos métodos tradicionais propostos em visão computacional e também por ainda não ser amplamente utilizada em tarefas relacionadas à área agrícola. A utilização de uma abordagem multi-escala está relacionada à variação do tamanho dos padrões encontrados em imagens de satélite e visa tornar o método mais robusto ao permitir que características distintas sejam aprendidas em cada uma das escalas e usadas de forma complementar. |