Detecção de clusters espacias e espaço-temporais em modelos com excesso de zeros e sobredispersão
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Minas Gerais
UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/BUBD-AAHDZQ |
Resumo: | The Spatial Scan Statistic is one of the most important methods for detecting and monitoring spatial disease clusters. Usually it is assumed that disease cases follow a Poisson or Binomial distribution. In practice, however, case count datasets frequently present na excess of zeroes and/or overdispersion, resulting in the violation of those commonly used models, increasing type I error occurrence. This thesis describes a modi_cation of the Spatial Scan Statistic with the Zero Inated Double Poisson (ZIDP) model to reduce type I error, accommodating simultaneously an excess of zeroes and overdispersion. The null and alternative model parameters are estimated by the Expectation-Maximization algorithm and the p-value is obtained through the Fast Double Bootstrap Test. An application is presented for Hanseniasis data in the Brazilian Amazon. An extension of this statistic in prospective space-time surveillance systems has been studied and in assess their performance Monte Carlo simulations were used. |