Word embedding-based representations for short text
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Minas Gerais
Brasil ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO Programa de Pós-Graduação em Ciência da Computação UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/38885 https://orcid.org/0000-0001-7582-4651 |
Resumo: | Textos curtos estão em todo lugar na Web, incluindo mídias sociais, sites de perguntas e respostas (Q&A), textos de propagandas e um número cada vez maior de outras aplicações. Eles são caracterizados pelo escasso contexto de palavras e extenso vocabulário. Estas características tornam a descoberta de conhecimento em texto curto desafiadora, motivando o desenvolvimento de novos métodos. Técnicas de mineração de texto são dependentes da forma como textos são representados. A necessidade de entradas de tamanho fixo para a maioria dos algortimos de aprendizado de máquina exige representações vetoriais, tais como as representações clássicas TF e TF-IDF. Contudo, estas representações são esparsas e podem induzir a "maldição da dimensionalidade". No nível de palavras, modelos de vetores de palavras, tais como Skip-Gram e GloVe, produzem embeddings que são sensíveis a semântica e consistentes com álgebra de vetores. Este trabalho apresenta contribuições em representação de texto curto para classificação de documentos e modelagem de tópicos para texto curto. Na primeira linha, uma investação sobre combinações apropriadas de vetores de palavras para geração de vetores de documentos é realizada. Estratégias variam de simples combinações até o método PSO-WAWV, baseado na meta-heurística PSO. Resultados em classificação de documentos são competitivos com TF-IDF e revelam ganhos significativos sobre outros métodos. Na segunda linha de pesquisa, um arcabouço que cria pseudodocumentos para modelagem de tópicos é proposto, além de duas implementações: (1) CoFE, baseado na co-ocorrência de palavras; e (2) DREx, que usa vetores de palavras. Também são propostos o modelo Vec2Graph, que induz um grafo de similaridade de vetores de palavras, e o algoritmo VGTM, um modelo de tópicos probabilístico para texto curto que funciona sobre Vec2Graph. Resultados experimentais mostram ganhos significativos em NPMI e F1-score quando comparados com métodos estado-da-arte. |