Extended pre-processing pipeline for text classification: on the role of meta-features, sparsification and selective sampling
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Minas Gerais
Brasil ICEX - INSTITUTO DE CIÊNCIAS EXATAS Programa de Pós-Graduação em Ciência da Computação UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/33474 |
Resumo: | Pipelines de classificação de texto são uma sequência de tarefas que devem ser executadas para classificar documentos em um conjunto de categorias predefinidas. A fase de pré-processamento (antes do treinamento) desses pipelines envolve diferentes maneiras de transformar e manipular os documentos para a próxima fase (aprendizado). Nesta dissertação, apresentamos três novas etapas na fase de pré-processamento dos pipelines de classificação de texto para melhorar a eficácia e reduzir os custos associados. A etapa de geração de meta-features (MFs) baseadas em distância visa reduzir a dimensionalidade da matriz termo-documento original, enquanto produz um espaço potencialmente mais informativo, o qual explora explicitamente as informações discriminativas sobre as categorias. O segundo passo é a esparsificação que visa tornar a representação do MF menos densa para reduzir os custos de treinamento. A terceira etapa é a amostragem seletiva (SS), destinada a remover linhas (documentos) da matriz obtida na etapa anterior, selecionando cuidadosamente os “melhores” documentos para a fase de aprendizado. Nossos experimentos mostram que o pipeline de pré-processamento estendido proposto pode obter ganhos significativos em eficácia quando comparado ao TF-IDF original (até 52 %) e às representações baseadas em embeddings (até 46 %), a um custo muito menor (até 9,7x mais rápido em alguns conjuntos de dados). Outra contribuição principal é uma avaliação completa e rigorosa do trade-off entre custo e eficácia associadas à introdução dessas novas etapas no pipeline. |