Extended pre-processing pipeline for text classification: on the role of meta-features, sparsification and selective sampling

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Washington Luiz Miranda da Cunha
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ICEX - INSTITUTO DE CIÊNCIAS EXATAS
Programa de Pós-Graduação em Ciência da Computação
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/33474
Resumo: Pipelines de classificação de texto são uma sequência de tarefas que devem ser executadas para classificar documentos em um conjunto de categorias predefinidas. A fase de pré-processamento (antes do treinamento) desses pipelines envolve diferentes maneiras de transformar e manipular os documentos para a próxima fase (aprendizado). Nesta dissertação, apresentamos três novas etapas na fase de pré-processamento dos pipelines de classificação de texto para melhorar a eficácia e reduzir os custos associados. A etapa de geração de meta-features (MFs) baseadas em distância visa reduzir a dimensionalidade da matriz termo-documento original, enquanto produz um espaço potencialmente mais informativo, o qual explora explicitamente as informações discriminativas sobre as categorias. O segundo passo é a esparsificação que visa tornar a representação do MF menos densa para reduzir os custos de treinamento. A terceira etapa é a amostragem seletiva (SS), destinada a remover linhas (documentos) da matriz obtida na etapa anterior, selecionando cuidadosamente os “melhores” documentos para a fase de aprendizado. Nossos experimentos mostram que o pipeline de pré-processamento estendido proposto pode obter ganhos significativos em eficácia quando comparado ao TF-IDF original (até 52 %) e às representações baseadas em embeddings (até 46 %), a um custo muito menor (até 9,7x mais rápido em alguns conjuntos de dados). Outra contribuição principal é uma avaliação completa e rigorosa do trade-off entre custo e eficácia associadas à introdução dessas novas etapas no pipeline.