Revenue optimization and customer targeting in daily-deals sites

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Anisio Mendes Lacerda
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/ESBF-9GMN7J
Resumo: Daily-deals sites (DDSs), such as Groupon and Peixe Urbano, attract millions of customers in the hunt for offers at significantly reduced prices. The challenge of DDSs is to find the best match between deals and customers while generating as much revenue as possible. One important objective of a DDS is to improve the aggregated value customers give to emails, which should not be seen as spam. This thesis solves three different problems in order to guarantee revenue maximization and customer satisfaction. First, a method for predicting the number of coupons a deal is going to sell is proposed. Second, we present an email prioritization approach. Third, we introduce a new strategy for deals recommendation via email. All three methods improved the results of state-of-the-art algorithms for the tasks being addressed, with gains in precision varying from 7% to 21%, while reducing the number of emails sent in 40% without affecting the number of customers clicking the deals in emails.