Infinitos números de Carmichael

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Savio Ribas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/EABA-978HN5
Resumo: The goal of this work is to show that there are infinitely many Carmichael numbers. Hence, the Carmichael numbers are in some way the worst numbers for testing primality using Fermats Little Theorem. Thus, Fermats Little Theorem can be (and is) used as a good test of non-primality, but it never can be used as a primality test. Our main reference was the paper There are infinitely many Carmichael numbers ([1], W. R. Alford, A. Granville and C. Pomerance) and to fulfill our goal we studied many topics in various areas of Mathematics, such as Mertens asymptotic estimates, group theory and characters, Carmichaels function, Davenports constant, Brun-Titchmarsh inequality (which led us to study the Fouriers theory and the large sieve), Prime Number Theorem in Arithmetic Progression in more general hypotheses and some estimates about the zeros of Dirichlet L-series.