Análise numérica da equação de Allen-Cahn
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Minas Gerais
Brasil ICX - DEPARTAMENTO DE MATEMÁTICA Programa de Pós-Graduação em Matemática UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/56381 |
Resumo: | In the following thesis, we will study the Allen-Cahn equation ut = Δu − ϵ−2f(u). We will begin by showing the well-posedness of the boundary value problem induced by this equation with Neumann boundary conditions. In addition, we will prove that its solution satisfies a Maximum Principle and some regularity proprieties. Next, we will move to the numerical analysis and study a semi-implicit discretization in time, showing that it is unconditionally stable and that its error grows only polinomially in ϵ−1 if the time-step satisfies some hypothesis. Finally, we will introduce a spatial discretization, using the finite element method, and show that, with certain adaptations in the arguments, it is also possible to obtain an error estimative that depends only polinomially in ϵ−1. |