Estrutura de covariância de modelos espaciais para dados de área
Ano de defesa: | 2008 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Minas Gerais
UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/RFFO-7UCM3R |
Resumo: | Este trabalho está dividido em três Capítulos. Em todo o trabalho nós utilizamos o mapa dos EUA para facilitar a referência ao trabalho de Wall (2004), que foi o principal motivador deste trabalho. No primeiro Capítulo nós introduzimos os modelos SAR e CAR e fazemos uma análise de dados. Nós consideramos dados de Renda per Capita, Expectativa de vida e Percentual de Graduados nos EUA. O capítulo 2 é um artigo submetido. Nesse Capítulo, nós mostramos mais detalhadamente os resultados não intuitivos. Nós consideramos resultados de álgebra linear e obtemos uma expressão simples e intuitiva para a matriz de covariância que explica os resultados não intuitivos. Nós obtemos termos para aproximações da matriz de covariância e estudamos algumas aproximações para a matriz de covariância. Nós também estudamos o segundo autovalor da matriz de vizinhança utilizada pelos modelos SAR e CAR e sua relação com os termos da expressão obtida para a matriz de covariância. Também estudamos o impacto da conectividade e do tamanho do mapa no segundo autovalor. No Capítulo 3 nós consideramos um modelo espacial Bayesiano para dados gaussianos. Nesse modelo, consideramos um efeito aleatório com distribuição a priori CAR. Obtemos a distribuição a posteriori e uma expressão simples e intuitiva para a matriz de covariância a posteriori dos efeitos aleatórios. Nós avaliamos o impacto da informação a priori em relação a informação dos dados em termos da precisão da priori e da precisão dos dados. Obtemos também a expressão da covariância a distribuição posteriori dos efeitos aleatórios quando a distribuição à priori é CAR intrinsica. Nesse Capítulo, fazemos referência ao Capítulo 2 como um artigo submetido. No Capítulo 4 nós tiramos algumas conclusões e colocamos algumas linhas de pesquisa para trabalhos futuros |