Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
MAGALHÃES, Adriano Mendes
 |
Orientador(a): |
SERRA, Ginalber Luiz de Oliveira
 |
Banca de defesa: |
SERRA, Ginalber Luiz de Oliveira
,
SOUZA, Francisco das Chagas de
,
CORTES, Omar Andres Carmona
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Maranhão
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
|
Departamento: |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://tedebc.ufma.br/jspui/handle/tede/3020
|
Resumo: |
In the areas of control and system identification, inverse modeling from experimental data is one of the major challenges for nonlinear dynamic systems based control strategies. Therefore, in this dissertation, a proposal for recursive inverse identification of nonlinear dynamic systems based on Takagi-Sugeno fuzzy model and structured in state space with state observer is presented, resulting in a inverse Takagi-Sugeno fuzzy model. To obtain the <antecedent proposition> of this model, this proposal uses the Gustafson-Kessel (GK) fuzzy clustering methodology in a time sliding data window, achieving static and dynamic estimation aspects. In order to obtain the <consequent proposition>, this proposal works with a Kalman observer state-space structure, which has been defining for system inverse mapping at each operation point, resulting in inverse fuzzy local submodels. To estimate the parameters of these submodels, the Kalman filter / Observer IDentification (OKID) methodology is used. Furthermore, to demonstrate the proposed methodology applicability, experimental results, which are concerning to a continuous stirring tank reactor, a Hammerstain model benchmark and a helicopter with two degree of freedom, are presented as case studies. Then, analyzes and final considerations highlight aspects of the optimal experiment, which is resulting from each case study. |