Segmentação automática da próstata em imagens de ressonância magnética utilizando redes neurais convolucionais, mapa probabilístico e treinamento adversário

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: FERREIRA, Jonnison Lima lattes
Orientador(a): SILVA, Aristófanes Corrêa lattes
Banca de defesa: SILVA, Aristófanes Corrêa lattes, PAIVA, Anselmo Cardoso de lattes, CAVALCANTE, André Borges lattes, BRAZ JÚNIOR, Geraldo lattes, CARVALHO FILHO, Antonio Oseas de lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tedebc.ufma.br/jspui/handle/tede/2577
Resumo: Prostate cancer is the second most common cancer among men, being the second most deadly. Early detection is a strategy to find the tumor at an early stage and thus provide a better chance of treatment. Currently the prostate gland imaging test has grown for prevention, diagnosis and treatment. The manual segmentation of the prostate is delayed and the propensity to variability among those expected, due to work, alternatives such as computational systems that use image processing and the identification of more advanced and exploited patterns for the early diagnosis of this disease, providing a second opinion for the specialist and increase the process. In this work, several automatic tasks are provided for the segmentation of the prostate from magnetic resonance imaging using a deep learning technique, probabilistic mapping and adversarial training of neural networks. The proposed methodology was tested on two public imaging databases, the Prostate 3T prostate and the PROMISE12, resulting in an average Dice of 89%.