Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
REIS, Thiago Nelson Faria dos
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
TEIXEIRA, Mário Antonio Meireles
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
TEIXEIRA, Mário Antonio Meireles
,
ALMEIDA, João Dallyson Sousa de
,
SOARES, André Castelo Branco
,
PAIVA, Anselmo Cardoso de
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Maranhão
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
|
Departamento: |
DEPARTAMENTO DE INFORMÁTICA/CCET
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://tedebc.ufma.br/jspui/handle/tede/2323
|
Resumo: |
The allocation of resources in Cloud Computing has been done in a reactive way, what can generate service guarantee failures and the charging of idle resources. In order to alleviate these problems, the objective of this work is to present a predictive resource allocation solution, in the form of a Configuration Recommender, using Support Vector Regression (SVR) and Genetic Algorithms (GA). As a case study, machine learning applications based on the Weka tool are chosen. This arrangement is used to compute application execution time and recommend a viable and valid configuration of cloud resources, based on the estimation of execution time and costs. The results show that the predicted times had an acuracy of 94.71% in relation to the real ones, thus leading to an efficient estimation of time and cost. In some cases of execution in the cloud environment, there was a reduction of time and cost of 38.8% and 45.62%, respectively. |