Aplicações de ensemble learning para o estudo do efeito de mutações pontuais em estruturas tridimensionais de proteínas

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Freitas, Eduardo Kenji Hasegawa de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.furg.br/handle/1/9971
Resumo: O refinar de propriedades das proteínas, através de mutações pontuais sobre seus aminoácidos é uma prática muito comum utilizada em processos da indústria bioquímica. Métodos computacionais acurados são necessários para realizar a predição sobre esses experimentos de mutações, tornando o design de proteínas mais eficiente. Por meio de bases de dados provenientes do Protherm, onde cada instância inclui dados numéricos,como variação da energia livre de Gibbs, mudança de entalpia, mudança de capacidade térmica, temperatura de transição, entre outros, são informações importantes para a compreensão da estabilidade da proteína. As predições do efeito da mutação na estrutura da proteína medido pela variação da variação da energia de Gibbs (ddG) são divididas entre duas classes, estabilizante e desestabilizante, onde algoritmos de classificação e ensemble de classificadores, disponibilizados pelo software Weka, terão a função de determinar a acurácia dos modelos de predição. Através de três experimentos, que são diferenciados pelo pré-processamento dos dados de entrada para os modelos de predição, é avaliado o comportamento dos das predições cada ferramenta, proporcionando uma discussão de como a bioinformática pode se beneficiar desses resultados e como os modelos de predição criados podem predizer o impacto de mutações pontuais na estrutura de proteínas.