Algoritmo adaptativo tipo-LMS com soma do erro

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Nahuz, Charles Silva lattes
Orientador(a): BARROS FILHO, Allan Kardec Duailibe
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
País: Brasil
Palavras-chave em Português:
LMS
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tedebc.ufma.br:8080/jspui/handle/tede/1690
Resumo: In this paper, implemented a new lter similar to the LMS, but, with a coast function based in the sum of the error. As a result, we obtain a very simple function, producing a rapid convergence and a small mismatch when compared with the LMS algorithm and other algorithms. The adaptive lter is based on non-linear functions such as estimation of the gradient of a surface performance. We use the gradient algorithm to update the weights. this update is based on high-order statistics to obtain information about the signs involved in the process, in order to improve the performace of the adaptive lter. Derive the equations based on Taylor series of non-linear functions, to achieve the criteria that ensures their convergence. We also do a weight vector covariance study in steady state and determine the equations that calculate the time constants in an adaptive process. Here the algorithm proposed, which uses a cost function and were made simulacoes Monte Carlo with real signals to validate the theory presented. In this role the α coefficients have been optimized to provide increased stability and better performance in its convergence speed.