Diagnóstico de câncer de mama em imagens mamográficas através de características locais e invariantes

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: MATOS, Caio Eduardo Falcão
Orientador(a): BRAZ JÚNIOR, Geraldo lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
Departamento: DEPARTAMENTO DE INFORMÁTICA/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tedebc.ufma.br:8080/jspui/handle/tede/1324
Resumo: Breast cancer is one of the leading causes of death among women over the world. The high mortality rates that cancers achieves across the world highlight the importance of developing and investigating the means for the early detection and diagnosis of this disease. Computer Detection and Diagnosis Systems (Computer Assisted Detection / Diagnosis) have been used and proposed as a way to help health professionals. This work proposes a new methodology for discriminating patterns of malignancy and benignity of masses in mammography images by analysis of local characteristics. To do so, it is proposed a combined methodology of feature detectors and descriptors with a model of data representation for an analysis. The goal is to capture both texture and geometry in areas of mammograms. We use the SIFT, SURF and ORB detectors, and the descriptors HOG, LBP, BRIEF and Haar Wavelet. The generated characteristics are coded by a bag of features model to provide a new representation of the data and therefore decrease a dimensionality of the space of characteristics. Finally, this new representation is classified using three approaches: Support Vector Machine, Random Forest, and Adaptive Boosting to differentiate as malignant and benign masses. The methodology provides promising results for the diagnosis of malignant and benign mass encouraging that as local characteristics generated by descriptors and detectors produce a satisfactory a discriminating set.