Um modelo para predição de bolsa de valores baseado em mineração de opinião

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Lima, Milson Louseiro lattes
Orientador(a): LABIDI, Sofiane lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Departamento: Engenharia
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tedebc.ufma.br:8080/jspui/handle/tede/297
Resumo: Predicting the behavior of stocks in the stock market is a challenging task, a lot of times related to unknown factors or influenced by very distinct natures of variables, which can range from high-profile news to the collective sentiment, expressed in publications on social networks. Such market volatility may represent considerable financial losses for investors. In order to forestall such variations other mechanisms to predict the behavior of assets in the stock market have been proposed, based on pre-existing indicator data. Such mechanisms only analyze statistical data, not considering the collective human sentiment. This work aims to develop a model to predict the stock market, based on analysis of sentiment and it will make use of techniques of artificial intelligence as natural language processing (PLN) and Support Vector Machines (SVM) to predict the active behavior. However, it should be emphasized that this model is intended to be an aid tool in the decision-making process that involves buying and selling shares on the stock market.