Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Froz, Bruno Rodrigues
 |
Orientador(a): |
SILVA, Aristófanes Corrêa
 |
Banca de defesa: |
Fonseca Neto, João Viana da
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Maranhão
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
|
Departamento: |
Engenharia
|
País: |
BR
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tedebc.ufma.br:8080/jspui/handle/tede/285
|
Resumo: |
The lung cancer is known for presenting the highest mortality rate and one of the lowest survival rate after diagnosis, which is mainly caused by the late detection and treatment. With the goal of assist the lung cancer specialists, computed aided diagnosis systems are developed to automate the detection and diagnosis of this disease. This work proposes a methodology to classify, with computed tomography images, lung nodules candidates and non-nodules candidates. The Lung Image Database Consortium (LIDC) image database is used to create an image database with nodules candidates and an image database with non-nodule candidates. Three techniques are utilized to extract texture measurements. The first one is the artificial life algorithm Artificial Crawlers. The second one is the use of Rose Diagram to extract directional measurements. The third and last one is an hybrid model to join the Artificial Crawlers and Rose Diagram texture measurements. In the classification, que Support Vector Machine classifier is used, with its radial basis kernel. The archived results are very promising. With 833 LIDC exams, divided in 60% for train and 40% for test, we reached na accuracy mean of 94,30%, sensitivity mean of 91,86%, specificity mean of 94,78%, variance coefficient of accuracy of 1,61% and ROC curves mean área of 0,922. |