Meta-aprendizagem para seleção de algoritmos sintonizados aplicada ao Problema de Flow Shop Permutacional.

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: NASCIMENTO, Chrystian Gustavo Martins lattes
Orientador(a): OLIVEIRA, Alexandre César Muniz de lattes
Banca de defesa: OLIVEIRA, Alexandre César Muniz de lattes, COUTINHO, Luciano Reis lattes, SOUZA, Bruno Feres de lattes, CARVALHO, André Carlos Ponce de Leon Ferreira de lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
Departamento: DEPARTAMENTO DE INFORMÁTICA/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tedebc.ufma.br/jspui/handle/tede/2706
Resumo: Meta-heuristics are high-level search strategies that guide the search for the most promising regions of the solution space and try to escape the optimal local solutions. However, due to the heterogeneity of instances of combinatorial optimization problems, it is not guaranteed that a meta-heuristic can always obtain the best solution in a set of metaheuristics, so algorithm selection, such as meta-learning, can provide a most effective solution when defining which meta-heuristic to choose according to the structural characteristics of the instances. In this work we propose a meta-learning framework for meta-heuristics selection tuned by the race method, which includes meta-features extracted from the graph-based representation of the problem and definition of the meta-classes from of the tuned meta-heuristics. Experiments have shown that the approach is effective for selecting meta-heuristics and their parameters for instances And that the chosen meta-features can extract structural information relevant to the problem addressed.