Detalhes bibliográficos
Ano de defesa: |
1999 |
Autor(a) principal: |
Buzzo, Walther Rogério |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/18/18140/tde-10062024-174103/
|
Resumo: |
Este trabalho trata do problema de programação de operações Flow Shop Permutacional. Pelo fato de tal problema ser considerado NP-hard, diversos métodos heurísticos têm sido propostos com o objetivo de obter uma seqüência das tarefas que minimize a duração total da programação. Um dos tipos de métodos heurísticos consiste em melhorar soluções iniciais a partir de procedimentos de busca em vizinhança, tais como Algoritmo Genético (AG) e Simulated Annealing (SA). Nos últimos anos, métodos utilizando AG e SA têm sido apresentados para a solução de tal problema de programação da produção. Uma idéia interessante que tem despertado gradativa atenção refere-se ao desenvolvimento de métodos metaheurísticos híbridos utilizando Algoritmo Genético e Simulated Annealing. Assim, o objetivo é combinar as técnicas de tal forma que o procedimento resultante seja mais eficaz do que qualquer um dos seus componentes isoladamente. Neste trabalho é apresentado um método heurístico híbrido Algoritmo Genético - Simulated Annealing para minimizar a duração total da programação flow shop permutacional. Com o propósito de avaliar o desempenho do método híbrido, ele é comparado com métodos puros AG e SA que foram utilizados na sua concepção. Os resultados obtidos a partir de uma experimentação computacional são discutidos |