Metodologia computacional para a segmentação da próstata e classificação de lesões em imagens de ressonância magnética utilizando o modelo de Ising

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: REIS, Artur Bernardo Silva lattes
Orientador(a): SILVA, Aristófanes Corrêa lattes
Banca de defesa: SILVA, Aristófanes Corrêa lattes, PAIVA, Anselmo Cardoso de lattes, CONCI, Aura lattes, PACIORNIK, Sidnei lattes, CARVALHO FILHO, Antonio Oseas de lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Maranhão
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
Departamento: DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tedebc.ufma.br/jspui/handle/tede/2627
Resumo: Prostate cancer is the second most prevalent type of cancer in the male population worldwide. The adoption of prostate imaging tests for the prevention, diagnosis, and treatment has grown. It is known that early detection increases the chances of an effective treatment, improving the prognosis of the disease. With this aim, computational tools have been proposed with the purpose of assisting the specialist in the interpretation of imaging tests, especially magnetic resonance imaging (MRI), providing the detection of lesions. The research of this doctoral work has as primary objective the proposition of an automatic methodology for the detection of lesions in the prostate. We divide the proposed methodology into two stages. In the first stage prostate segmentation is performed, for this purpose, the Ising model is used, models of probability, quality threshold and fusion of atlas labels. The second stage consists of the classification of abnormal tissues in the prostate. To this end, we extract lesion candidates through the Wolff algorithm, then texture characteristics are extracted using the Ising model, and finally, the vector machine is used to classify lesion or healthy tissue. The methodology was validated using three bases of T2-weighted MRI images. We used three bases for prostate segmentation. However, we used only one in prostate segmentation and lesion detection. The total number of images used in the validation of prostate segmentation was 108. The experimental results obtained here indicate an excellent perspective, considering that we obtained a mean Dice similarity coefficient (DSC) of 94.03 % in the step of. We validated The lesion detection stage on a set of 28 images with lesion markers. The methodology obtained a sensitivity of 95:92%, specificity of 93:89% and accuracy of 94:16%. These are promising since they were more significant than other methods compared.