Modelo misto e rede neural artificial para estimativas dendrométricas de árvores individuais
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Lavras
Programa de Pós-Graduação em Engenharia Florestal UFLA brasil Departamento de Ciências Florestais |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufla.br/jspui/handle/1/29069 |
Resumo: | A carência de hardwares e softwares com alta capacidade de processamento era uma limitação para os ajustes de modelos de regressão mais complexos e inteligência computacional. Atualmente, é possível realizar esses ajustes e, com o passar dos anos, vem crescendo o uso de modelos não lineares mistos e redes neurais artificiais nas diversas áreas do conhecimento. Com o emprego desses novos métodos, é possível uma melhoria da exatidão das estimativas das variáveis florestais, auxiliando nas tomadas de decisão para o planejamento florestal. No primeiro artigo deste estudo foi feita uma revisão de literatura para compreender melhor estes métodos e a sua importância para a obtenção de melhores resultados. O segundo artigo utilizou a técnica de modelos não lineares mistos em multinível, com o objetivo de explicar a variação da altura de árvores individuais, em função de variáveis das árvores e do povoamento, e avaliar a qualidade dos ajustes para obtenção de sortimentos florestais. Por último, no artigo 3, fez-se uso das Redes Neurais Artificias e procurou -se demonstrar que as mesmas podem ser tratadas como modelos de regressão, sendo possível recuperar seus parâmetros, obter um modelo e estimar o volume do fuste por meio da integração da estimativa da altura em função do raio. Provou-se que é possível usar os dois métodos para melhorar as estimativas das variáveis florestais. |