Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Mendonça, João Paulo Almeida de
 |
Orientador(a): |
Sato, Fernando
 |
Banca de defesa: |
Galvão, Douglas Soares
,
Carvalho, Ana Claudia Monteiro
,
Leonel, Sidiney de Andrade
,
Quirino, Welber Gianini
 |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Física
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/13131
|
Resumo: |
A física computacional surgiu no contexto geral de física como uma nova maneira de pensar e construir modelos sobre a natureza, que toma seu lugar não como parte, mas sim ao lado das já tradicionais física teórica e física experimental. Esse “terceiro caminho” tem avançado de maneira surpreendente nas últimas décadas, devido ao avanço da computação e das tecnologias a ela associadas. É cada vez mais comum o uso de técnicas não convencionais em física (geralmente advindas de computação ou matemática) no desenvolvimento de metodologias para física computacional. Geralmente, a ideia por trás dessas técnicas é resolver os problemas usando técnicas tradicionais adaptadas para arquiteturas que visam alto desempenho (como clusters ou placas de vídeo). Porém, tem surgido pouco a pouco espaço para que outras técnicas sejam usadas no tratamento de sistemas físicos, técnicas tais como os algoritmos bioinspirados ou a modelagem via sistemas dinâmicos. Nessa tese, vamos rever algumas das mais tradicionais técnicas em física computacional e introduzir algumas outras relativamente novas nessa área. Revisaremos os conceitos de modelagem molecular e de sistemas micromagnéticos, depois partiremos para o estudo dos sistemas dinâmicos e de alguns algoritmos de optimização bioinspirada. Apresentada a metodologia, introduziremos alguns dos vários trabalhos realizados em paralelo a elaboração desta tese, que ilustram a aplicação destas técnicas em sistemas dentro e fora do escopo comum em física computacional. |