Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Martinho, Alfeu Dias
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
Fonseca, Leonardo Goliatt da
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
Christo, Eliane da Silva
,
Saporet, Camila Martins,
Ribeiro, Celso Bandeira de Melo,
Campos, Luciana Conceição Dias,
Borges, Carlos Cristiano Hasenclever |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Modelagem Computacional
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/15317
|
Resumo: |
Os Rios são até hoje um dos maiores e mais importantes recursos para a sobrevivência da humanidade. Eles fornecem grande parte da água que consumimos e que usamos para produzir nossos alimentos e para nossa higiene. Além disso, a utilizamos para irrigar o solo das áreas agrícolas, para navegação, pesca, produção de energia elétrica, para além da manutenção da biodiversidade. Devido à escassez da água e da preocupação com a sua existência no futuro, torna-se indispensável o desenvolvimento de estudos que possam ajudar a compreender sua dinâmica, de modo a gerenciá-la. O rio Zambeze é o quarto maior curso de água do continente africano e tem vital importância, porque é a principal fonte de produção de energia elétrica de Moçambique, contribui para o desenvolvimento da economia do delta através da viabilização de atividades econômicas como agricultura, pastorícia, pesca, construção de vias de acesso e, na redução do risco de ocorrência de calamidades naturais, como a seca, cheias ou inundações. Apesar dessa necessidade, os estudos de recursos hídricos para essa região ainda são escassos. O presente trabalho apresenta o desenvolvimento de modelos híbridos de aprendizado de máquina para previsão de vazões naturais de corpos d’água do rio Zambéze na barragem Hidrelétrica de Cahora-Bassa, utilizando valores antecedentes de vazões afluentes, precipitação, evaporação e umidade relativa como variáveis de entrada. Cinco modelos foram considerados na análise: Extreme Gradient Boosting (XGB), Extreme Learning Machine (ELM), Support Vector Regression (SVR), Elastic Net linear (EN) e Multivariate Adaptive Regression Splines (MARS). Algoritmos de otimização evolutivos/bioinspirados: Grey wolf optimization (GWO), Genetic Algorithms (GA), Differential Evolution (DE) e Particle Swarm Optimization (PSO) foram utilizados como estratégias de seleção de todos os parâmetros internos dos modelos. E, além de avaliar o potencial dos cinco modelos de aprendizado de máquinas híbridos para simulação de fluxo, este trabalho também focou em dois métodos de seleção de variáveis de entradas, Least Absolute Shrinkage and Selection Operator (LASSO) e Partial Mutual Information variable selection (PMI), usados para escolher o subconjunto que permite a melhor previsão dos valores futuros, e que fornecem informações abrangentes sobre a influência das variáveis no fluxo simulado. Os modelos híbridos desenvolvidos realizaram as previsões para 1, 3, 5 e 7 dias à frente em dados coletados na barragem Hidroelétrica de Cahora-Bassa , em Moçambique. Medidas de desempenho combinadas e testes estatísticos foram aplicados para avaliação da performance dos modelos. Técnicas de análise de incerteza baseadas em intervalos de confiança e simulação de Montecarlo também foram utilizadas para a análise de confiabilidade das previsões fornecidas pelos modelos. Os resultados mostram que todos os modelos obtiveram bons desempenhos para prever a vazão do rio vários passos à frente, indicando que a integração dos algoritmos evolutivos/bioinspirados é uma alternativa bem-sucedida para produzir previsões precisas da vazão. O modelo híbrido XGB com GWO integrado e suas respectivas variações com seleção de variáveis de entrada, XGB-LASSO e XGB-PMI superaram os modelos híbridos EN, ELM, MARS e SVR, tendo apresentado a melhor performance, para 1, 3, 5 e 7 passos à frente. Esses modelos fornecem previsões confiáveis, e podem ser utilizados como uma alternativa para auxiliar na previsão de vazão, que é crucial para as atividades de gestão e planejamento sustentável ou otimizado de Recursos Hídricos em usinas hidroelétricas. |