Previsão de cargas elétricas a curto prazo por combinação de previsões via regressão simbólica

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Braga, Douglas de Oliveira Matos lattes
Orientador(a): Hippert, Henrique Steinherz lattes
Banca de defesa: Bastos, Ronaldo Rocha lattes, Oliveira, Fabrízzio Condé de lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Modelagem Computacional
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/6093
Resumo: O planejamento energético é base para as tomadas de decisões nas companhias de energia elétrica e, para isto, depende fortemente da disponibilidade de previsões acuradas para as cargas. Devido á inviabilidade de armazenamentos em larga-escala e o custo elevado de compras de energia a curto prazo, além da possibilidade de multas e sanções de órgãos governamentais, previsões em curto prazo são importantes para a otimização da alocação de recursos e da geração de energia. Neste trabalho utilizamos nove métodos univariados de séries temporais para a previsão de cargas a curto prazo, com horizontes de 1 a 24 horas a frente. Buscando melhorar a acurácia das previsões, propomos um método de combinação de previsões através de Regressão Simbólica, que combina de forma não-linear as previsões obtidas pelos nove métodos de séries temporais utilizados. Diferente de outros métodos não-lineares de regressão, a Regressão Simbólica não precisa de uma especificação previa da forma funcional. O método proposto é aplicado em uma série real da cidade do Rio de Janeiro (RJ), que contém cargas horárias de 104 semanas dos anos de 1996 e 1997. Comparamos, através de critérios indicados na literatura, os resultados obtidos pelo método proposto com os resultados obtidos por métodos tradicionais de combinação de previsões e ao resultado de simulações de redes neurais artificiais aplicados ao mesmo conjunto de dados. O método proposto obteve melhores resultados, que indicam que a não-linearidade pode ser aspecto importante para combinação de previsões no problema de previsão de carga a curto prazo