Metodo de direções interiores ao epígrafo - IED para otimização não diferenciável e não convexa via Dualidade Lagrangeana: estratégias para minimização da Lagrangeana aumentada

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Franco, Hernando José Rocha lattes
Orientador(a): Freire, Wilhelm Passarella lattes
Banca de defesa: Lemonge, Afonso Celso de Castro lattes, Barbosa, Hélio José Corrêa lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Modelagem Computacional
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/6942
Resumo: A teoria clássica de otimização presume a existência de certas condições, por exemplo, que as funções envolvidas em um problema desta natureza sejam pelo menos uma vez continuamente diferenciáveis. Entretanto, em muitas aplicações práticas que requerem o emprego de métodos de otimização, essa característica não se encontra presente. Problemas de otimização não diferenciáveis são considerados mais difíceis de lidar. Nesta classe, aqueles que envolvem funções não convexas são ainda mais complexos. O Interior Epigraph Directions (IED) é um método de otimização que se baseia na teoria da Dualidade Lagrangeana e se aplica à resolução de problemas não diferenciáveis, não convexos e com restrições. Neste estudo, apresentamos duas novas versões para o referido método a partir de implementações computacionais de outros algoritmos. A primeira versão, denominada IED+NFDNA, recebeu a incorporação de uma implementação do algoritmo Nonsmooth Feasible Direction Nonconvex Algorithm (NFDNA). Esta versão, ao ser aplicada em experimentos numéricos com problemas teste da literatura, apresentou desempenho satisfatório quando comparada ao IED original e a outros solvers de otimização. Com o objetivo de aperfeiçoar mais o método, reduzindo sua dependência de parâmetros iniciais e também do cálculo de subgradientes, uma segunda versão, IED+GA, foi desenvolvida com a utilização de algoritmos genéticos. Além da resolução de problemas teste, o IED-FGA obteve bons resultados quando aplicado a problemas de engenharia.