Método de direções interiores ao epígrafo para a solução de problemas de otimização não-convexos e não-diferenciáveis via dualidade lagrangeana

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Gómez, Jesús Cernades lattes
Orientador(a): Freire, Wilhelm Passarella lattes
Banca de defesa: Mazorche, Sandro Rodrigues lattes, Norman, José Herskovits lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora
Programa de Pós-Graduação: Mestrado Acadêmico em Matemática
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/1068
Resumo: Este trabalho tem por finalidade apresentar um método para a solução de problemas de otimização não-convexos e não-diferenciáveis. O método, chamado IED (Interior Epigraph Directions), aplica-se a problemas de otimização cuja função objetivo é contínua e definida em um subconjunto compacto de Rn, sujeita a restrições de igualdade e/ou desigualdade. O método IED considera o problema dual induzido por uma função lagrangeana aumentada e obtém a solução primal gerando uma sequêmcia de pontos no interior do epígrafo da função dual. Primeiramente, um subgradiente é usado para gerar uma aproximação linear do problema dual. Em seguida, usa-se esta aproximação linear para definir-se uma direção de busca interior ao epígrafo da função dual. Obtém-se então, a partir de um ponto no interior do epígrafo, um novo ponto interior e, consequêntemente, uma sequência de pontos interiores é construida. Essa sequência produz uma sequência dual que por sua vez origina uma sequência primal, através da solução de um subproblema originado pela dualidade. A análise de convergência do algoritmo é também apresentada bem como resultados numéricos da solução de problema extraídos da literatura.