Planejamento probabilístico de sistemas híbridos de energia elétrica com análise de risco

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Kitamura, Daniel Toledo lattes
Orientador(a): Oliveira, Leonardo Willer de lattes
Banca de defesa: Gomes, Phillipe Vilaça lattes, Melo, Igor Delgado de lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Engenharia Elétrica
Departamento: Faculdade de Engenharia
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://doi.org/10.34019/ufjf/di/2022/00069
https://repositorio.ufjf.br/jspui/handle/ufjf/13881
Resumo: O presente trabalho apresenta uma metodologia para o planejamento de sistemas híbridos de energia elétrica (SHEE) com análise de risco, considerando a política regulatória aplicada a sistemas de distribuição do Brasil (Resolução Normativa 482/2012 da ANEEL). Para tal, o problema é modelado como programação estocástica considerando incertezas associadas às variáveis aleatórias do problema: índice de claridade para o sistema fotovoltaico, demanda de carga, preço de combustível para geração termoelétrica e tarifa de energia. No modelo proposto, cenários são definidos para considerar as variáveis aleatórias citadas de forma combinada, ou seja, uma dada combinação dessas variáveis resulta em um cenário. Adicionalmente, a metodologia inclui ferramenta de análise de propensão ao risco econômico de cada consumidor. A metodologia determina o número e tipo de painéis fotovoltaicos, a capacidade de geração a diesel e de sistema de armazenamento a bateria, em que o objetivo é minimizar os custos de investimento e operação ao longo do horizonte de planejamento. Estudos de casos envolvendo dois consumidores comerciais de grande porte são introduzidos para avaliar a metodologia proposta. Para modelar e resolver o problema de otimização resultante, utilizou-se o modelo de desenvolvimento de código aberto, Pyomo, baseado em linguagem Python, em conjunto com o solver Gurobi. Uma importante conclusão é que a metodologia pode auxiliar consumidores na tomada de decisão sobre o investimento em SHEE.