Planejamento probabilístico de sistemas híbridos de energia elétrica com análise de risco
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Engenharia Elétrica
|
Departamento: |
Faculdade de Engenharia
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://doi.org/10.34019/ufjf/di/2022/00069 https://repositorio.ufjf.br/jspui/handle/ufjf/13881 |
Resumo: | O presente trabalho apresenta uma metodologia para o planejamento de sistemas híbridos de energia elétrica (SHEE) com análise de risco, considerando a política regulatória aplicada a sistemas de distribuição do Brasil (Resolução Normativa 482/2012 da ANEEL). Para tal, o problema é modelado como programação estocástica considerando incertezas associadas às variáveis aleatórias do problema: índice de claridade para o sistema fotovoltaico, demanda de carga, preço de combustível para geração termoelétrica e tarifa de energia. No modelo proposto, cenários são definidos para considerar as variáveis aleatórias citadas de forma combinada, ou seja, uma dada combinação dessas variáveis resulta em um cenário. Adicionalmente, a metodologia inclui ferramenta de análise de propensão ao risco econômico de cada consumidor. A metodologia determina o número e tipo de painéis fotovoltaicos, a capacidade de geração a diesel e de sistema de armazenamento a bateria, em que o objetivo é minimizar os custos de investimento e operação ao longo do horizonte de planejamento. Estudos de casos envolvendo dois consumidores comerciais de grande porte são introduzidos para avaliar a metodologia proposta. Para modelar e resolver o problema de otimização resultante, utilizou-se o modelo de desenvolvimento de código aberto, Pyomo, baseado em linguagem Python, em conjunto com o solver Gurobi. Uma importante conclusão é que a metodologia pode auxiliar consumidores na tomada de decisão sobre o investimento em SHEE. |