Homoclinic solution to zero of a non-autonomous, nonlinear, second order differential equation with quadratic growth on the derivative
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Mestrado Acadêmico em Matemática
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://doi.org/10.34019/ufjf/di/2022/00039 https://repositorio.ufjf.br/jspui/handle/ufjf/14037 |
Resumo: | O objetivo principal deste trabalho é obter uma solução positiva, suave, par e homoclínica para o problema −(A(u)u 0 ) 0 (t) + u(t) = λa1(t)|u(t)| q−1 + |u(t)| p−1 + g(|u 0 (t)|), em R. Considerando 1 < q < 2 < p < +∞ e a1 ∈ L s (R) ∩ C(R), s = 2 2−q , uma função positiva e par. Também A : R → R uma função Lipschitz, suave (minímo C 1 (R)), não decrescente e satisfazendo ∃γ ∈ (0, 1) tal que 0 < γ ≤ A(t) ∀t ∈ R, e g : R → R uma função contínua satisfazendo 0 ≤ sg(s) ≤ |s| θ para todo s ∈ R, onde 2 < θ ≤ 3. Por homoclínica estamos nos referindo a “homoclínica para a origem” ou “homoclínica para zero”, isto é, a solução deve verificar limx→±∞ u(x) = 0. |