FDIPA - algoritmo de pontos interiores e direções viáveis para otimização não-linear diferenciável: um estudo de parâmetros

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Fonseca, Erasmo Tales lattes
Orientador(a): Freire, Wilhelm Passarela lattes
Banca de defesa: Mazorche, Sandro Rodrigues lattes, Duarte, Alexandre Rocha lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora
Programa de Pós-Graduação: Mestrado Acadêmico em Matemática
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/1308
Resumo: Neste trabalho apresentamos um estudo da influência dos parâmetros de um algoritmo de pontos interiores e direções viáveis para solução de problemas de otimização não linear. Esse algoritmo, denominado FDIPA, tem por objetivo encontrar dentre os pontos de um conjunto definido por restrições de igualdade e/ou desigualdade, aqueles que minimizam uma função diferenciável. O FDIPA baseia-se na resolução de dois sistemas de equações lineares com a mesma matriz de coeficientes, obtidos das condições necessárias de primeira ordem de Karush-Kuhn-Tucker. A partir de um ponto inicial no interior do conjunto viável, o FDIPA gera uma sequência de pontos também interiores ao conjunto. Em cada iteração, uma nova direção de descida é obtida e, em seguida, produz-se uma deflexão da direção de descida no sentido do interior do conjunto viável, de modo a se obter uma nova direção que seja de descida e viável. Realiza-se então uma busca linear para obter um novo ponto interior e garantir a convergência global do método. Uma família de algoritmos pode ser obtida variando-se as regras de atualização dos parâmetros do FDIPA. O estudo apresentado neste trabalho foi feito considerando-se um único algoritmo e com restrições de desigualdade somente. Testes numéricos apontaram para uma escolha de parâmetros que levou a um número menor de iterações na resolução dos problemas teste.