Novos algoritmos de simulação estocástica com atraso para redes gênicas

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Silva, Camillo de Lellis Falcão da lattes
Orientador(a): Oliveira, Itamar Leite de lattes
Banca de defesa: Pinto, Guilherme Albuquerque lattes, Porto, Luismar Marques lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
SSA
DDG
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/4828
Resumo: Atualmente, a eficiência dos algoritmos de simulação estocástica para a simulação de redes de regulação gênica (RRG) tem motivado diversos trabalhos científicos. O interesse por tais algoritmos deve-se ao fato de as novas tecnologias em biologia celular — às vezes chamadas de tecnologias de alto rendimento (high throughput technology cell biology) — te-rem mostrado que a expressão gênica é um processo estocástico. Em RRG com atrasos, os algoritmos para simulação estocástica existentes possuem problemas — como crescimento linear da complexidade assintótica, descarte excessivo de números aleatórios durante a si-mulação e grande complexidade de codificação em linguagens de programação — que podem resultar em um baixo desempenho em relação ao tempo de processamento de simulação de uma RRG. Este trabalho apresenta um algoritmo para simulação estocástica que foi chamado de método da próxima reação simplificado (SNRM). Esse algoritmo mostrou-se mais eficiente que as outras abordagens existentes para simulações estocásticas realizadas com as RRGs com atrasos. Além do SNRM, um novo grafo de dependências para reações com atrasos também é apresentado. A utilização desse novo grafo, que foi nomeado de delayed dependency graph (DDG), aumentou consideravelmente a eficiência de todas as versões dos algoritmos de simulação estocástica com atrasos apresentados nesse trabalho. Finalmente, uma estrutura de dados que recebeu o nome de lista ordenada por hashing é utilizada para tratar a lista de produtos em espera em simulações de RRGs com atrasos. Essa estrutura de dados também se mostrou mais eficiente que uma heap em todas as simulações testadas. Com todas as melhorias mencionadas, este trabalho apresenta um conjunto de estratégias que contribui de forma efetiva para o desempenho dos algoritmos de simulação estocástica com atrasos de redes de regulação gênica.