Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Oliveira, Fábio Luiz Marinho de
 |
Orientador(a): |
Vieira, Marcelo Bernardes
 |
Banca de defesa: |
Fonseca Neto, Raul
,
Pedrini, Hélio |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/4838
|
Resumo: |
Descrição de movimento tem sido um tema desafiador e popular há muitos anos em visão computacional e processamento de sinais, mas também intimamente relacionado a aprendizado de máquina e reconhecimento de padrões. Frequentemente, para realizar essa tarefa, informação de movimento é extraída e codificada em um descritor. Este trabalho apresenta um método simples e de rápida computação para extrair essa informação e codificá-la em descritores baseados em histogramas de deslocamentos relativos. Nossos descritores são compactos, globais, que agregam informação de quadros inteiros, e o que chamamos de auto-descritor, que não depende de informações de sequências senão aquela que pretendemos descrever. Para validar estes descritores e compará-los com outros tra balhos, os utilizamos no contexto de Reconhecimento de Ações Humanas, no qual cenas são classificadas de acordo com as ações nelas exibidas. Nessa validação, obtemos resul tados comparáveis aos do estado-da-arte para a base de dados KTH. Também avaliamos nosso método utilizando as bases UCF11 e Hollywood2, com menores taxas de reconhe cimento, considerando suas maiores complexidades. Nossa abordagem é promissora, pelas razoáveis taxas de reconhecimento obtidas com um método muito menos complexo que os do estado-da-arte, em termos de velocidade de computação e compacidade dos descritores obtidos. Adicionalmente, experimentamos com o uso de Aprendizado de Métrica para a classificação de nossos descritores, com o intuito de melhorar a separabilidade e a com pacidade dos descritores. Os resultados com Aprendizado de Métrica apresentam taxas de reconhecimento inferiores, mas grande melhoria na compacidade dos descritores. |