Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Figueiredo, Ana Mara de Oliveira
 |
Orientador(a): |
Vieira, Marcelo Bernardes
 |
Banca de defesa: |
Machado, Alex Fernandes da Veiga
,
Fonseca Neto, Raul
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/4785
|
Resumo: |
O reconhecimento de ações humanas é um problema desafiador em visão computacional que tem potenciais áreas de aplicações. Para descrever o principal movimento do vídeo um novo descritor de movimento é proposto neste trabalho. Este trabalho combina dois métodos para estimar o movimento entre as imagens: casamento de blocos e de gradiente de intensidade de brilho da imagem. Neste trabalho usa-se um algoritmo de casamento de blocos de tamanho variável para extrair vetores de deslocamento, os quais contém a informação de movimento. Estes vetores são computados em uma sequência de frames obtendo a trajetória do bloco, que possui a informação temporal. Os vetores obtidos através do casamento de blocos são usados para clusterizar as trajetórias esparsas de acordo com a forma. O método proposto computa essa informação para obter tensores de orientação e gerar o descritor final. Este descritor é chamado de autodescritor porque depende apenas do vídeo de entrada. O tensor usado como descritor global é avaliado através da classificação dos vídeos das bases de dados KTH, UCF11 e Hollywood2 com o classificador não linear SVM. Os resultados indicam que este método de trajetórias esparsas é competitivo comparado ao já conhecido método de trajetórias densas, usando tensores de orientação, além de requerer menos esforço computacional. |