A video self-descriptor based on sparse trajectory clustering

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Figueiredo, Ana Mara de Oliveira lattes
Orientador(a): Vieira, Marcelo Bernardes lattes
Banca de defesa: Machado, Alex Fernandes da Veiga lattes, Fonseca Neto, Raul lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/4785
Resumo: O reconhecimento de ações humanas é um problema desafiador em visão computacional que tem potenciais áreas de aplicações. Para descrever o principal movimento do vídeo um novo descritor de movimento é proposto neste trabalho. Este trabalho combina dois métodos para estimar o movimento entre as imagens: casamento de blocos e de gradiente de intensidade de brilho da imagem. Neste trabalho usa-se um algoritmo de casamento de blocos de tamanho variável para extrair vetores de deslocamento, os quais contém a informação de movimento. Estes vetores são computados em uma sequência de frames obtendo a trajetória do bloco, que possui a informação temporal. Os vetores obtidos através do casamento de blocos são usados para clusterizar as trajetórias esparsas de acordo com a forma. O método proposto computa essa informação para obter tensores de orientação e gerar o descritor final. Este descritor é chamado de autodescritor porque depende apenas do vídeo de entrada. O tensor usado como descritor global é avaliado através da classificação dos vídeos das bases de dados KTH, UCF11 e Hollywood2 com o classificador não linear SVM. Os resultados indicam que este método de trajetórias esparsas é competitivo comparado ao já conhecido método de trajetórias densas, usando tensores de orientação, além de requerer menos esforço computacional.