A novel rule-based evolving fuzzy system applied to the thermal modeling of power transformers

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Alves, Kaike Sa Teles Rocha lattes
Orientador(a): Aguiar, Eduardo Pestana de lattes
Banca de defesa: Lemos, André Paim lattes, Pekaslan, Direnc lattes, Fonseca, Leonardo Goliatt da lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Modelagem Computacional
Departamento: Faculdade de Engenharia
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://doi.org/10.34019/ufjf/di/2021/00232
https://repositorio.ufjf.br/jspui/handle/ufjf/13488
Resumo: Os avanços em Big Data motivaram pesquisadores a desenvolver e aprimorar modelos inteligentes para lidar de forma eficiente e eficaz com os dados. Nesse cenário, a previsão de séries temporais vem ganhando ainda mais atenção. A literatura científica demonstra o melhor desempenho de tais modelos nesse assunto. A previsão de séries temporais é amplamente utilizada no planejamento estratégico para apoiar a tomada de decisões, proporcionando diferencial competitivo às organizações. Neste trabalho, um novo sistema nebuloso evolutivos baseado em regras é proposto para a previsão de séries temporais. Este é um modelo robusto capaz de desenvolver e atualizar sua estrutura em ambientes desconhecidos, capturar dinâmicas e mudanças de fluxo em dados e produzir resultados precisos mesmo quando se trata de dados complexos. O modelo introduzido implementa a correlação para melhorar a qualidade dos clusters, reduzindo seu desvio padrão. O modelo é avaliado usando dois conjuntos de dados sintéticos: a série temporal Mackey-Glass e a identificação do sistema dinâmico não linear. E, finalmente, o sistema introduzido é implementado para prever a temperatura do ponto quente, usando três conjuntos de dados de um transformador de potência real. O monitoramento de pontos quentes é necessário para maximizar a capacidade de carga e a vida útil dos transformadores. O método proposto é avaliado em termos de erro quadrático médio, erro de índice adimensional, erro absoluto médio, tempo de execução e número de regras finais. Os resultados são comparados com modelos de previsão tradicionais e com alguns sistemas nebuloso evolutivo baseados em regras. O novo sistema nebuloso evolutivos superou os modelos comparados para a série temporal Mackey-Glass e os conjuntos de dados de transformadores de potência, considerando as métricas de erro. Um teste estatístico comprovou o desempenho superior do modelo introduzido. O algoritmo também obteve um tempo de execução e número de regras finais competitivo. Os resultados demonstram o alto nível de autonomia e adaptação do modelo para prever dados complexos e não estacionários com precisão. Vendo a importância de modelos precisos para lidar com dados no apoio à tomada de decisão, os resultados sugerem a implementação do modelo como ferramenta de previsão favorecendo planejamento estratégico.