A novel rule-based evolving fuzzy system applied to the thermal modeling of power transformers
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Modelagem Computacional
|
Departamento: |
Faculdade de Engenharia
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://doi.org/10.34019/ufjf/di/2021/00232 https://repositorio.ufjf.br/jspui/handle/ufjf/13488 |
Resumo: | Os avanços em Big Data motivaram pesquisadores a desenvolver e aprimorar modelos inteligentes para lidar de forma eficiente e eficaz com os dados. Nesse cenário, a previsão de séries temporais vem ganhando ainda mais atenção. A literatura científica demonstra o melhor desempenho de tais modelos nesse assunto. A previsão de séries temporais é amplamente utilizada no planejamento estratégico para apoiar a tomada de decisões, proporcionando diferencial competitivo às organizações. Neste trabalho, um novo sistema nebuloso evolutivos baseado em regras é proposto para a previsão de séries temporais. Este é um modelo robusto capaz de desenvolver e atualizar sua estrutura em ambientes desconhecidos, capturar dinâmicas e mudanças de fluxo em dados e produzir resultados precisos mesmo quando se trata de dados complexos. O modelo introduzido implementa a correlação para melhorar a qualidade dos clusters, reduzindo seu desvio padrão. O modelo é avaliado usando dois conjuntos de dados sintéticos: a série temporal Mackey-Glass e a identificação do sistema dinâmico não linear. E, finalmente, o sistema introduzido é implementado para prever a temperatura do ponto quente, usando três conjuntos de dados de um transformador de potência real. O monitoramento de pontos quentes é necessário para maximizar a capacidade de carga e a vida útil dos transformadores. O método proposto é avaliado em termos de erro quadrático médio, erro de índice adimensional, erro absoluto médio, tempo de execução e número de regras finais. Os resultados são comparados com modelos de previsão tradicionais e com alguns sistemas nebuloso evolutivo baseados em regras. O novo sistema nebuloso evolutivos superou os modelos comparados para a série temporal Mackey-Glass e os conjuntos de dados de transformadores de potência, considerando as métricas de erro. Um teste estatístico comprovou o desempenho superior do modelo introduzido. O algoritmo também obteve um tempo de execução e número de regras finais competitivo. Os resultados demonstram o alto nível de autonomia e adaptação do modelo para prever dados complexos e não estacionários com precisão. Vendo a importância de modelos precisos para lidar com dados no apoio à tomada de decisão, os resultados sugerem a implementação do modelo como ferramenta de previsão favorecendo planejamento estratégico. |