Power transformers thermal modeling using an Enhanced Set-Membership Multivariable Gaussian Evolving Fuzzy System

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Rocha, Marcos Vinícius Gonçalves da lattes
Orientador(a): Aguiar, Eduardo Pestana de lattes
Banca de defesa: Guimarães, Frederico Gadelha lattes, Marcato, André Luís Marques lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Engenharia Elétrica
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/12153
Resumo: O conhecimento da distribuição de temperatura em transformadores de potência é essencial para o gerenciamento de sistemas de distribuição elétrica. O monitoramento da temperatura do ponto quente de um transformador de energia pode estender sua vida útil. Neste trabalho, apresentamos dois novos modelos baseados na filtragem Set-Membership: o Set-Membership evolutivo Gaussiano Multivariado e o Enhanced Set-Membership evolutivo Gaussiano Multivariado. Ambas as abordagens agem ajustando a taxa de aprendizagem no sistema de modelagem fuzzy evolutivo. Para avaliar seu desempenho foram aplicados conjuntos de dados sintéticos, como benchmarks, e dados para modelagem térmica de transformadores de potência reais, sob duas condições de carga: com e sem sobrecarga. Os resultados obtidos são comparados com o desempenho do modelo evolutivo Gaussiano Multivariado original e com outros modelos clássicos sugeridos na literatura. Ambos os modelos propostos obtiveram erros menores e apresentam número competitivo de regras, sugerindo que os modelos são abordagens flexíveis e eficientes nestes cenários.